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The far-field acoustic radiation due to the interaction of upstream, unsteady vor-
tical disturbances with an airfoil in subsonic, compressible flow is calculated using
potential theory. A Kirchhoff surface is placed in the near field surrounding the airfoil
and the pressure on this surface is calculated from the unsteady flow field, obtained
using a second-order finite-difference code. The governing equation is reduced to the
Helmholtz equation in the frequency domain and the solution is written in terms of an
integral over the Kirchhoff surface involving the free-space Green’s function and an
unknown single-layer density function. The single-layer density is then determined
from the boundary condition on the Kirchhoff surface. This method is presented as
an alternative to classical Kirchhoff methods. It has the advantage of being able to
accommodate arbitrarily shaped Kirchhoff surfaces and is also readily extendable
to three-dimensional problems. Numerical results are presented for thin, symmetric,
and loaded airfoils. Thin-airfoil results are compared to the analytical solution, and
thick-airfoil results are checked for numerical convergence and compared to results
obtained from a time-domain Euler solver.c© 2000 Academic Press
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1. INTRODUCTION

The prediction of far-field sound radiation is a key area of interest in the computational
aeroacoustics community. This subject is a common intersection for most unsteady exter-
nal aerodynamic problems such as the gust response of airfoils, flutter problems, and jet
noise. Since these problems are generally posed in open domains, it is difficult to extend
the computational domains to the far field owing to the prohibitive cost of the computations
involved. While state-of-the-art computers provide high speed and large storage capacity,
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the numerical algorithms themselves are known to have problems—they are subject to dis-
sipation and dispersion errors resulting from the disparity in magnitude between the (small)
acoustic pressure and the dominant flow pressure, and these may contaminate acoustic cal-
culations. In addition, the lack of analytical solutions for most problems of interest serves
to hinder the development of numerical methods.

Current efforts involving the direct numerical simulation of far-field sound have been
made by Tam [24], Tam and Webb [25], Hixonet al. [10, 11], Botteldooren [5], Fung
et al. [8], Mitchell et al. [16], Djambazovet al. [6], Freund [7], Meadows and Atkins [15],
Lyrintzis and co-workers [13, 14], and Stenger [21]. In addition, there is a sequence of
numerical works by Atassi and his associates [2–4, 17, 18, 22, 23] dealing with frequency-
domain problems. A summary of these efforts is found in [1]. These methods employ the
numerical simulation of the near field, developed by Scott [19] and Scott and Atassi [20],
and the construction of a Kirchhoff surface for the prediction of far-field sound using the
Green’s function technique.

In most of these works, the driving philosophy is the accurate numerical simulation
of the near field and a “semi-analytical” approach to predicting the far-field sound. For
example, the work of Atassi, and co-workers [2, 3, 17, 18, 22, 23] uses a Kirchhoff method
and a modified Green’s function approach wherein Kirchhoff’s formula is used to predict
the far-field sound. This method relies on constructing a specific Green’s function for a
circular Kirchhoff surface and requires the normal derivative of the pressure on the surface;
a modified Green’s function is then introduced to eliminate this need. The Green’s function
is expressed as an infinite series of higher order Hankel functions. Because the natural
grid for the near-field pressure calculation is in elliptic coordinates, the pressure on the
Kirchhoff circle must be interpolated and then numerically differentiated. Also, the series
representation for the Green’s function must be truncated.

This paper is motivated by a similar philosophy, but the key difference is in the formulation
of the far-field sound radiation calculations. The method presented here, based on potential
theory, has two specific goals: (i) to simplify the computation of the Green’s function and
(ii) to allow a convex arbitrary shape for the Kirchhoff surface. The potential theoretic
approach presented here satisfies both goals. It requires only the free-space Green’s function,
which is simple to compute, and an unknown single-layer density. This single-layer density
is determined by a technique proposed by Hariharan and MacCamy [9] for electromagnetic
scattering problems. In addition, the Kirchhoff surface can be almost any shape, so long
as the surface can be written in polar form (r = f (θ)). This is attractive for studying jet
noise problems, where the computational domains are often elongated. Finally, the method
is extendable to three-dimensional geometries with little difficulty.

The Green’s function representation of the far field, expressed in Eq. (41) below, is based
on the single-layer potential. The choice of this as opposed to the double-layer potential is
dictated mainly by convenience. The numerical procedure based on this formulation was
verified with exact as well as semi-analytical solutions, and no conditioning problems were
encountered. The implementation of a double-layer potential representation, which requires
the normal derivative of the free-space Green function, is currently in progress, in order to
do a quantitative comparison of the two formulations.

The application of the potential method to determining the far-field acoustics of an airfoil
subjected to an upstream harmonic gust is shown here in detail. The calculations presented
here for a thin airfoil are compared to an analytical solution, and thick-airfoil results are
compared to a high-order time-domain Euler solver [10]. The near-field calculations are
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performed by a second-order finite-difference code, GUST3D, developed by Scott [19] and
Scott and Atassi [20].

2. PROBLEM FORMULATION

2.1. Near-Field Formulation

Consider inviscid, subsonic, compressible flow where the fluid is an ideal, non-heat-
conducting gas with constant specific heat. Assume that there are no shocks, imposed
entropy disturbances, or incident acoustic waves present. The time-dependent governing
continuity and momentum equations are

ρt +∇ · (ρU) = 0 (1)

Ut + (U · ∇)U+ 1

ρ
∇ p = 0, (2)

whereρ is density,p is pressure, andU is the fluid velocity. Place an arbitrary airfoil in
the fluid so that the center of the three-dimensional coordinate system is at the center of
the airfoil with thex1 coordinate parallel to the upstream mean flowU∞i. Assume that the
upstream rotational part of the flow is small and that the mean flow is two dimensional.
Then (1) and (2) are linearized about the mean flow using

U = U0+ u (3)

ρ = ρ0+ ρ ′ (4)

p = p0+ p′, (5)

where 0 subscripts indicate mean flow quantities and′ superscripts indicate time-depen-
dent perturbation quantities. The upstream flow is given by

U∞(x, t) = U∞i + u∞(x− iU∞t), (6)

whereu∞ represents the imposed upstream rotational disturbance. Since the problem is
linear,u∞ can be decomposed into its Fourier components without loss of generality so that
incident vortical gusts of the form

u∞ = a exp(i k · (x− iU∞t)) (7)

can be considered. In (7),a and k are the amplitude and wave number vectors of the
disturbance, respectively, with|a| ¿ U∞. In addition, the continuity equation requires that
a · k = 0.

Substituting (3)–(5) into (1) and (2), and neglecting higher order terms, gives the lin-
earized continuity and momentum equations

D0ρ
′

Dt
+ ρ ′∇ · U0+∇ · (ρ0u) = 0 (8)

ρ0

(
D0u
Dt
+ u · ∇U0

)
+ ρ ′U0 · ∇U0 = −∇ p′, (9)
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where D0/Dt = ∂/∂t + U0 · ∇ is the convective derivative associated with the mean
flow.

The unsteady velocity can be written as the sum of a known vortical componentu(R) (see
[1]) and an unknown potential component as

u(x, t) = u(R) +∇φ. (10)

The unsteady potentialφ satisfies the non-constant-coefficient convective wave equation
given by

D0

Dt

(
1

c2
0

D0φ

Dt

)
− 1

ρ0
∇ · (ρ0∇φ) = 1

ρ0
∇ · (ρ0u(R)

)
, (11)

wherec0 is the mean flow speed of sound. The boundary conditions onφ are given by

∇φ · n = 0 (airfoil surface) (12)

D0

Dt
(1φ) = 0 (wake) (13)

1(∇φ · n) = 0 (wake) (14)

∇φ → −∇φ̃ as x1→−∞. (15)

Equations (13) and (14) impose continuity of the pressure and normal velocity, respectively,
across the wake, while (15) ensures thatu→ u∞ asx1→−∞. φ̃ is a known function of
the upstream disturbance. For a complete discussion of the development of this boundary
value problem, see [19, 20].

The unsteady pressure is related toφ through the equation

p′ = −ρ0(x)
D0φ

Dt
. (16)

By determiningφ, the acoustic pressurep′ may then be calculated.
After nondimensionalizing appropriately, the boundary-value problem is simplified by

applying the transformation

φ = ψ exp(−ik1t + ik3x3− i K180), (17)

where

K1 = k1M2
∞

β2∞
(18)

β∞ =
√

1− M2∞. (19)

M∞ is the free-stream Mach number and80 is the mean flow potential function. The
normalized wave numberk1 is called the reduced frequency and is given by

k1 = ωc

2U∞
, (20)
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wherec is the airfoil chord length andω is the dimensional angular frequency. The trans-
formation (17) converts the problem to the frequency domain and eliminates the spanwise
coordinatex3, allowing the calculation to be done in two dimensions.

The unsteady pressure in terms of the transformed potential is

p′ = −ρ0

(
−ik1+U2

0
∂

∂80

)
ψ exp(−ik1t + ik3x3− i K180). (21)

A function p̄ is introduced such that

p′ = p̄ exp(−ik1t + ik3x3− i K180) (22)

with

p̄ = −ρ0

[
−i
(
k1+U2

0 K1
)
ψ +U2

0
∂ψ

∂80

]
. (23)

The unknown potentialψ and its derivative∂ψ/∂80 are computed numerically [19, 20].
The calculation, which is quite involved, is part of the near-field computation, so details
are omitted here. Equation (23) is used to obtain the pressure required for the boundary
condition in the far-field formulation described below.

2.2. Far-Field Formulation

A Kirchhoff surface, denoted by0, is introduced to surround the airfoil in the near field,
as shown in Fig. 1. The region exterior to0 is denoted byÄ. The only assumptions are that
0 is smooth and that0 is far enough away from the airfoil so that the mean flow quantities

FIG. 1. Problem configuration. A periodic gust strikes an airfoil, and the far-field acoustic pressure is com-
puted.
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in Ä differ only slightly from those of the free stream. This allows the linearization of the
continuity (1) and momentum (2) equations about the uniform mean flow using

U = U∞ + u (24)

ρ = ρ∞ + ρ ′ (25)

p = p∞ + p′, (26)

where∞ subscripts indicate free-stream quantities. Substituting (24)–(26) into (1) and (2)
gives the linearized continuity and momentum equations inÄ,

D∞ρ ′

Dt
+ ρ∞∇ · u = 0 (27)

ρ∞
D∞u
Dt
+∇ p′ = 0, (28)

whereD∞/Dt = ∂/∂t +U∞∂/∂x1. Applying the operatorsD∞/Dt to (27) and∇ to (28)
gives

D2
∞ρ
′

Dt2
+ ρ∞ D∞

Dt
(∇ · u) = 0 (29)

ρ∞
D∞
Dt

(∇ · u)+∇2 p′ = 0. (30)

To eliminateu from these equations, subtract (30) from (29) to obtain

D2
∞ρ
′

Dt2
= ∇2 p′. (31)

Under the assumption of isentropic flow, the state equations relatingp andρ are

p = Aργ ,
∂p

∂ρ
= c2
∞ (γ = 1.4 for standard air), (32)

whereA is a constant. Combining these with the linearizations in (25) and (26) gives the
relation

p′ = c2
∞ρ
′. (33)

Substituting (33) into (31) gives

1

c2∞

D2
∞p′

Dt2
= ∇2 p′, (34)

which reduces the problem to one dependent variable only, namelyp′. Nondimensionalizing
appropriately then gives the result

M2
∞

(
∂

∂t
+ ∂

∂x1

)2

p′ = ∇2 p′. (35)

From this point, all quantities are assumed to be nondimensional.
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Transforming the problem to the frequency domain using

p′(x, t) = p̄(x1, x2) exp(−ik1t + ik3x3− i K1x1) (36)

eliminates the dependence of the problem on timet and spanwise coordinatex3. Since p̄
approximatesp from the near-field formulation equations (22) and (23), it is possible to
calculatep̄ numerically [19, 20] on0.

After an application of the transformation in (36), Eq. (35) becomes

β2
∞
∂2 p̄

∂x2
1

+ ∂
2 p̄

∂x2
2

+
(

k2
1M2
∞

β2∞
− k2

3

)
p̄ = 0. (37)

Finally, the coordinate system is transformed to the Prandtl–Glauert plane using the linear
transformation

x̃1 = x1
(38)

x̃2 = β∞x2.

The transformed Kirchhoff surface is denoted by0̃ and the transformed domain bỹÄ.
Applying this transformation to Eq. (37) yields

∇̃2 p̄+ K 2 p̄ = 0, (39)

where

K 2 = k2
1M2
∞

β4∞
− k2

3

β2∞
. (40)

The problem has been reduced to a classical exterior problem governed by the Helmholtz
equation, where the boundary conditions may be calculated numerically.

3. SOLUTION PROCEDURE

The solution procedure is based on single-layer potential theory [9]. There are two advan-
tages to this formulation. First, the solution relies on a free-space Green’s function rather
than a specific Green’s function that is dictated by the domain of the problem, making
the numerical computation of the Green’s function extremely simple. Second, arbitrarily
shaped Kirchhoff surfaces may be used, whereas other methods may require a specified
shape. This allows a great deal of flexibility in the numerical implementation, because
the Kirchhoff surface may be adjusted to match any numerical grid used to determine the
near-field pressure, which avoids interpolation of the pressure.

The solution to (39) may be expressed as

p̄(x̃) =
∫
0̃

σ (ỹ)G f (x̃ | ỹ) ds̃y, x̃ ∈ Ä̃, ỹ ∈ 0̃, (41)

whereσ is the density function,G f is the free-space Green’s function

G f (x̃ | ỹ) = − i

4
H (1)

0 (K |x̃− ỹ|), (42)
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and p̄ satisfies

• p̄ ∼ ei K R/
√

R as|x̃| → ∞ with R= |x̃− ỹ|
• p̄ = f̃ (x̃) on 0̃.

As x̃ approaches the surface0̃, (41) becomes∫
0̃

σ (ỹ)G f (x̃ | ỹ) ds̃y = f̃ (x̃), x̃, ỹ ∈ 0̃. (43)

This is a singular integral equation (with logarithmic singularity) of the first kind. The
existence of solutions to this type of equation has been shown by several authors. Some of
the earliest results were proposed by Hsiao and MacCamy [12]. A procedure for solving
Eq. (43) forσ is outlined below. Upon calculatingσ and substituting in (41), one can
determinep̄ at any point̃x ∈ Ä̃.

To allow an arbitrary shape of the Kirchhoff surface, assume that0̃ is polar-representable
(can be expressed as a functionr = R(θ)). Let x̃ andỹ (both on0̃) be expressed in polar
coordinates as

x̃(θ) = (R(θ) cosθ, R(θ) sinθ) (44)

ỹ(φ) = (R(φ) cosφ, R(φ) sinφ), (45)

and let

f̃ (x̃) ≡ f̂ (θ), σ (ỹ) ≡ σ̂ (φ). (46)

The distance between the two pointsx̃ andỹ is then given by

|x̃− ỹ| =
√

R2(θ)+ R2(φ)− 2R(θ)R(φ) cos(θ − φ)
≡ d(θ, φ), (47)

and the Green’s function becomes

G f (x̃ | ỹ) = − i

4
H (1)

0 (K |x̃− ỹ|)

= − i

4
H (1)

0 (K d(θ, φ))

≡ Ĝ(θ | φ). (48)

In terms ofdφ, ds is given by

ds=
√

R′2(φ)+ R2(φ) dφ. (49)

Substituting these quantities into (43) yields

f̂ (θ) =
∫ 2π

0
σ̂ (φ)Ĝ(θ | φ)

√
R′2(φ)+ R2(φ) dφ, θ ∈ [0, 2π). (50)

By definingσ̄ (φ) ≡ σ(φ)
√

R′2+ R2, the final equation is obtained:

f̂ (θ) =
∫ 2π

0
σ̄ (φ)Ĝ(θ | φ) dφ, θ ∈ [0, 2π). (51)
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There is a logarithmic singularity in̂G (42) whenθ = φ, which makes a direct numerical
approximation of (51) impossible. The formulation must therefore be recast into a form
that avoids numerical difficulties. To do this, first note that the zero-order Hankel function
of the first kind may be expressed by

− i

4
H (1)

0 (z) = 1

2π
log(z)+ γ̂ − i

4
+ T̂(z), (52)

where ˆγ = (γ − log 2)/2π . Here,γ is Euler’s constant and̂T(z)→ 0 asz→ 0. This means
thatĜ may be written as

Ĝ(θ | φ) = 1

2π
log(K d(θ, φ))+ γ̂ − i

4
+ T̂(K d(θ, φ)). (53)

Next, observe that whenθ → φ, R(θ) can be expanded in a neighborhood ofφ by a Taylor
series. This allowsd(θ, φ) to be written in this limiting case as

d(θ, φ) = 2 sin

( |θ − φ|
2

)√
R′2(φ)+ R2(φ). (54)

This confines the singularity which arises in (53) to the factor log(sin(|θ − φ|/2)).
The next step is to rewrite (51) as

f̂ (θ) =
∫ 2π

0
(σ̄ (φ)− σ̄ (θ))Ĝ(θ | φ) dφ + σ̄ (θ)

∫ 2π

0
Ĝ(θ | φ) dφ, θ ∈ [0, 2π). (55)

This formulation is preferable to (51) for two reasons. First, the first integral in (55) can be
computed numerically without difficulty because the integrand can be shown to approach
zero asθ → φ. Second, the singularity in̂G in the second integral can be drawn out
analytically, leaving an integral with a regular integrand, which can easily be computed
numerically. Specifically, substituting (53) and (54) intoĜ yields the expression for the
second integral, forθ ∈ [0, 2π),∫ 2π

0
Ĝ(θ | φ) dφ =

∫ 2π

0

[
1

2π
log(Q)+ γ̂ − i

4
+ T̂(θ, φ)

]
dφ

=
∫ 2π

0

1

2π

[
log

(
sin

( |θ − φ|
2

))
+ T̄(θ, φ)

]
dφ, (56)

whereT̄ andQ are defined by

T̄ =
γ̂ −

i
4 + 1

2π log(2K
√

R′2(φ)+ R2(φ)), θ = φ
− i

4 H (1)
0 (K d(θ, φ))− 1

2π log
(
sin
[ |θ−φ|

2

])
, θ 6= φ

 (57)

Q = 2K
√

R′2(φ)+ R2(φ) sin

( |θ − φ|
2

)
. (58)

It is important to note that̄T is regular and that the singularity appears only in the first
term on the right in (56). Using complex analysis, one can obtain the exact value of this
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integral, namely

1

2π

∫ 2π

0
log

(
sin

( |θ − φ|
2

))
dφ = −log(2). (59)

Substituting this result into (55) gives

f̂ (θ) =
∫ 2π

0
(σ̄ (φ)− σ̄ (θ))Ĝ(θ | φ) dφ − σ̄ (θ) log(2)+ σ̄ (θ)

∫ 2π

0
T̄(θ, φ)dφ,

θ ∈ [0, 2π). (60)

This equation can easily be solved numerically because the two integrands are regular. The
numerical procedure for finding ¯σ can now be developed.

4. NUMERICAL PROCEDURE

To determine the solution numerically, a suitable shape for the Kirchhoff surface must be
specified. The choice of an ellipse is convenient, not only because analytical representations
for R(θ) and R′(θ) are available, but also because it is most convenient to solve for the
near-field pressure using elliptic coordinates, so that the Kirchhoff surface may be specified
on a near-field gridline to avoid interpolation error in the pressure.

The goal is to solve (60) numerically for ¯σ(θ) so that it can be used in (41) to obtain̄p
in the far field. The procedure is described in general here, and implementation issues are
discussed in the next section.

A numerical representation of (60) can be obtained using rectangular quadrature. Choose
a discretization constantn and leth = 2π/n. For i , j = 1, . . . ,n, defineφ j = ( j − 1/2)h
andθi = (i − 1/2)h. Then, (60) becomes

n∑
j=1

Ai j σ̄ j = f̂ i , (61)

whereAi j = A(θi , φ j ), σ̄ j = σ̄ (φ j ), and f̂ i = f̂ (θi ). The near-field solver is used to deter-
mine the values of̄p, and hencef̂ i , at a finite number of points on the Kirchhoff surface.
The Ai j values are given by

Ai j =


−log(2)+

[
n∑

k=1

T̄ ikh−
n∑

k=1(k 6= i )

Ĝikh

]
, i = j

Ĝi j h, i 6= j

 , (62)

whereT̄ i j = T̄(θi , φ j ) andĜi j = Ĝ(θi , φ j ). An equation is obtained for eachi = 1, . . . ,n,
yielding ann× n linear system, which can be solved by any standard method for the
unknowns ¯σ1, . . . , σ̄n.

Once{σ̄ j } is obtained, it is a rather simple matter to obtainp̄ at any pointx ∈ Ä. It is
first necessary to transform the point tox̃ ∈ Ä̃ using (38). Let̃x be represented as

x̃ = (r cosθ, r sinθ), (63)
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wherer andθ are fixed, and let̃y ∈ 0̃ be defined as

ỹ = (R(φ) cosφ, R(φ) sinφ), φ ∈ [0, 2π). (64)

Therefore, the distance betweenx̃ andỹ is given by

|x̃− ỹ| =
√

[r cosθ − R(φ) cosφ]2+ [r sinθ − R(φ) sinφ]2

=
√

r 2+ R2(φ)− 2r R(φ) cos(θ − φ)
= d(r, θ, φ), (65)

and the Green’s function becomes

Ĝ(θ, φ) = − i

4
H (1)

0 (K d(r, θ, φ)). (66)

As follows from (41), the solution is

p̄(r, θ) = − i

4

∫ 2π

0
σ̄ (φ)H (1)

0 (K d(r, θ, φ))dφ. (67)

This can be expressed numerically as

p̄(r, θ) = − i

4

n∑
j=1

σ̄ j H
(1)
0 (K d(r, θ, φ j ))h. (68)

5. RESULTS AND DISCUSSION

A number of numerical computations are presented here for thin, symmetric, and loaded
airfoils for a variety of flows and gusts. Thin-airfoil results, which appear in Section 5.1,
are compared with the analytical solution. Symmetric-airfoil results appear in Section 5.2.
There is no analytical solution to compare with, so a convergence study is presented, as is
a comparison with an Euler solver [10]. Loaded-airfoil results appear in Section 5.3; again,
a convergence study is presented.

All calculations except those shown in Fig. 11 employ a circular Kirchhoff surface. The
number of discretization points is 120 for a flat plate and 240 for a thick airfoil. The system
of equations generated is solved using Gaussian elimination with pivoting.

The configuration of the gust is shown in Fig. 2. Polar directivity plots of the solution on
a circle of radiusRfar appear below. The solution is normalized by multiplying the acoustic
pressure by

√
Rfar to remove its dependence on the far-field radius.

To interpret the directivity plots, note that|p′| = | p̄| sincep′ and p̄ are related to each
other through a complex exponential factor (Eq. (36)). For each observation point in the far
field, the point √

Rfar(|p′| cosθ, |p′| sinθ)

is plotted, whereθ is the polar angle of the observation point, as shown in Fig. 3. Lobes
indicate directions of noise propagation, while the absence of lobes indicates a zone of
silence.



FIG. 2. Gust configuration. A transverse gust travels along thex1 axis with amplitudea2 along thex2 axis. A
longitudinal gust travels along thex2 axis with amplitudea1 along thex1 axis. An oblique gust travels along the
x3 axis with amplitudea2 along thex2 axis.

FIG. 3. Polar directivity plot. At any given angleθ , a large radial amplitude indicates strong noise propagation,
while a small radial amplitude indicates weak noise propagation.

154
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FIG. 4. Comparison of computed and analytical far-field pressure for a flat plate atM = 0.5 andk1 = 0.1.

5.1. Thin-Airfoil Results

The far-field pressure was computed for a thin airfoil in flows with Mach numbers
M = 0.5 and 0.8 and reduced frequenciesk1 = 0.1, 1.0, and 3.0. A Kirchhoff circle of
radius 2.0 (one chord length) was used. The near-field pressure was obtained by running
GUST3D to numerical convergence, but no other attempt was made to optimize the results.
Figures 4–9 show the comparison of the computed pressure with the analytical solution at
a far-field radius of 100 for the various cases. The results are nearly perfect for the lower
frequencies and degrade only slightly for the higher frequencies. The accuracy depends
only slightly on the Mach number.

Analytically, these results should be independent of the radius of the Kirchhoff circle
used, because the mean flow is not disrupted by the thin airfoil. However, there are slight
differences in the numerical results, mainly caused by the approximate far-field boundary

FIG. 5. Comparison of computed and analytical far-field pressure for a flat plate atM = 0.5 andk1 = 1.0.
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FIG. 6. Comparison of computed and analytical far-field pressure for a flat plate atM = 0.5 andk1 = 3.0.

FIG. 7. Comparison of computed and analytical far-field pressure for a flat plate atM = 0.8 andk1 = 0.1.

FIG. 8. Comparison of computed and analytical far-field pressure for a flat plate atM = 0.8 andk1 = 1.0.
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FIG. 9. Comparison of computed and analytical far-field pressure for a flat plate atM = 0.8 andk1 = 3.0.

condition used in the near-field solver. Figure 10 shows these differences for an extreme
case,M = 0.8, k1 = 3.0 for Kirchhoff radii of 1.5, 2.0, and 2.5. Although the results are
slightly inaccurate, the differences caused by changing the radius are not significant. For
smaller values ofM andk1, the differences are even slighter.

The effect of changing the shape of the Kirchhoff surface can be seen in Fig. 11.
Mach numberM = 0.8 and reduced frequenciesk1 = 0.1, 1.0, and 3.0 were used with
a circular Kirchhoff surface of radius 2 and an elliptical surface withξ = 0.45, where
x = cos(πη) cosh(πξ), y = sin(πη) sinh(πξ). The elliptical surface coincides with the
near-field grid, so the pressure values are obtained without interpolation, whereas the circular
surface requires interpolation of the pressure. The plots in Fig. 11 indicate that there is a
minimal effect in changing the shape of the Kirchhoff surface.

FIG. 10. Effect of changing the Kirchhoff radius for a flat plate atM = 0.8 andk1 = 3.0.
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FIG. 11. Circular and elliptical Kirchhoff surfaces for a flat plate atM = 0.8 andk1 = 0.1, 1.0, and 3.0.

5.2. Symmetric-Airfoil Results

The far-field pressure was computed for a 12% thick unloaded Joukowski airfoil in
flows with Mach numberM = 0.5. Transverse gust results are shown in Fig. 12 (reduced
frequencyk1 = 0.1) and Fig. 13 (reduced frequencyk1 = 1.0), and 2D gust (with transverse
and longitudinal components) results are shown in Fig. 14 (k1 = k2 = 0.1) and Fig. 15
(k1 = k2 = 1.0). The intent in these cases is to gauge the effect of changing the location
of the Kirchhoff surface. There are two competing considerations: (i) the surface must be
far enough from the airfoil to be in the freestream region, so that the free-space Green’s

FIG. 12. Far-field pressure for a 12% thick, unloaded Joukowski airfoil using three Kirchhoff radii, atM = 0.5,
k1 = 0.1, andk2 = 0.0.
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FIG. 13. Far-field pressure for a 12% thick, unloaded Joukowski airfoil using three Kirchhoff radii, atM = 0.5,
k1 = 1.0, andk2 = 0.0.

function is valid, and (ii) the surface must be close enough to the airfoil for the near-field
solver to provide accurate pressure values ¯σ (the numerical grid used by the scheme is
concentrated near the airfoil and so is more accurate there).

In the cases presented in Figs. 12–15, Kirchhoff radii of 3.0, 3.5, and 4.0 were used. For
a radius of 3.0, the maximum deviation from mean flow is 0.87%. For a radius of 3.5, the
maximum deviation from mean flow is 0.61%. For a radius of 4.0, the maximum deviation
from mean flow is 0.45%. For the low-frequency cases (Figs. 12 and 14), changing the
Kirchhoff radius has virtually no effect, so it may be surmised that the potential method has

FIG. 14. Far-field pressure for a 12% thick, unloaded Joukowski airfoil using three Kirchhoff radii, atM = 0.5,
k1 = 0.1, andk2 = 0.1.
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FIG. 15. Far-field pressure for a 12% thick, unloaded Joukowski airfoil using three Kirchhoff radii, atM = 0.5,
k1 = 1.0, andk2 = 1.0.

converged numerically. The plots for the higher frequency cases (Figs. 13 and 15) do not
show perfect agreement, but the results are well within the desired range of consistency.

There are no analytical solutions available for comparison, so the results above constitute
only a check of numerical convergence. To help validate the method, a comparison with
a time-domain Euler solver [10] (a prefactored sixth-order compact solver with optimized
Runge–Kutta time stepping) was done for the same airfoil in a mean flow with Mach number
M = 0.5 and transverse gusts with reduced frequenciesk1 = 0.1, 1.0. The corresponding
acoustic intensities on a circle of radius 4 chord lengths (for a 2% magnitude gust) are
shown in Figs. 16 and 17. The agreement between the results may be considered to be quite
good, considering that they were obtained using completely different approaches. It should

FIG. 16. Acoustic intensity on a circle of radius 4 chord lengths for a symmetric Joukowski airfoil, atM = 0.5,
k1 = 0.1, andk2 = 0.0.
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FIG. 17. Acoustic intensity on a circle of radius 4 chord lengths for a symmetric Joukowski airfoil, atM = 0.5,
k1 = 1.0, andk2 = 0.0.

be noted that the Euler solver takes 72 h on a two-processor SGI Octane with R10000 chip,
whereas the near-field solver and potential method combined takes less than 3 min on a
Pentium II 400-MHz personal computer.

5.3. Loaded-Airfoil Results

The far-field pressure was computed for a 12% thick airfoil with an angle of attack of 2◦

and a camber ratio of 0.02 in flows with Mach numberM = 0.5. Transverse gust results are
shown in Fig. 18 (reduced frequencyk1 = 0.1) and Fig. 19 (reduced frequencyk1 = 1.0),
and 2D gust results are shown in Fig. 20 (k1 = k2 = 0.1) and Fig. 21 (k1 = k2 = 1.0). A
variety of Kirchhoff radii were used to gauge the influence of the deviation from mean flow.
For a radius of 3.0, the maximum deviation from mean flow is 3.7%. For a radius of 3.5, the

FIG. 18. Far-field pressure for a 12% thick, loaded Joukowski airfoil using four different Kirchhoff radii, at
M = 0.5, k1 = 0.1, andk2 = 0.0.



FIG. 19. Far-field pressure for a 12% thick, loaded Joukowski airfoil using four different Kirchhoff radii, at
M = 0.5, k1 = 1.0, andk2 = 0.0.

FIG. 20. Far-field pressure for a 12% thick, loaded Joukowski airfoil using four different Kirchhoff radii, at
M = 0.5, k1 = 0.1, andk2 = 0.1.

FIG. 21. Far-field pressure for a 12% thick, loaded Joukowski airfoil using four different Kirchhoff radii, at
M = 0.5, k1 = 1.0, andk2 = 1.0.
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maximum deviation from mean flow is 3.1%. For a radius of 4.0, the maximum deviation
from mean flow is 2.7%. For a radius of 4.5, the maximum deviation from mean flow is
2.4%. In the first case,M = 0.5, k1 = 0.1, shown in Fig. 18, the results for radius 4.0 and
4.5 are nearly the same, indicating numerical convergence, but in the other cases, it is clear
that a larger Kirchhoff radius is needed. Nevertheless, the degree of consistency here is
acceptable.

6. CONCLUSION

The analytical development of the potential method for far-field acoustic radiation from
airfoils is presented here, as is a description of its numerical implementation. This method
has several features that make it attractive:

• The potential method is easy to implement, because (i) only simple standard numeri-
cal techniques are needed (rectangular quadrature, Gauss–Jordan elimination with pivoting,
and possibly linear interpolation) and (ii) the potential method does not require the involved
calculation of a problem-dependent Green’s function but uses the well-known, easily com-
puted free-space Green’s function.
• The potential method is flexible in that the Kirchhoff surface is arbitrary and can be

made to coincide with the near-field solver grid to avoid interpolation of the near-field
pressure. Even so, the effect of interpolation is minimal.
• The potential method may be coupled with any near-field solver, as long as the near-

field computational domain extends a reasonable distance into the free-stream region.
• The potential method is easily extended to completely three-dimensional problems.

The numerical results presented here demonstrate an accuracy of 10% or better, which
is generally within an acceptable range of engineering accuracy. A substantial amount of
validation has been done; this work indicates that for reduced frequenciesk1 up to about
1, far-field results are very good, and for reduced frequencies up to about 1.5, far-field
results are acceptable. For higher reduced frequencies, an improved near-field solver must
be developed before far-field results can be considered acceptable. However, the main
question in this paper,how well does the potential method propagate near-field acoustics to
the far field?has been clearly answered—the potential method provides accurate far-field
pressure profiles. The method can be considered a viable alternative to existing approaches.

Future work includes the continuing parameter study of the method for the gust response
of unloaded and loaded thick airfoils, the development of a more accurate near-field solver,
and the extension of the method to three-dimensional acoustic problems involving sources
more complicated than gusts.
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